

EU project LIFE13 ENV IT 000461 / "EVERGREEN"

"Environmentally friendly biomolecules from agricultural wastes as substitutes of pesticides for plant diseases control"

Monitoring visit - May 13, 2016

Prof. Annalisa Romani - PHYTOLAB – DiSIA – University of Florence

Dr. Margherita Campo - INSTM - National Interuniversity Consortium of Materials

Science and Technology

	TIP	METABLE													
			Action		20	14			20	15			20	16	
Action number			Name of the Action	I	Ш	ш	IV	I	П	ш	IV	Ι	Π	Ш	IV
A. Pre	eparato	ory actions:													
B. Imp	olemer	ntation actions:								-					
В	3.1	Demonstration o for the control of important for the	f the performances of traditional pesticides bacterial and nematode diseases of plants EU												
В	3.2	Demonstration o extraction proces polyphenolic mo and waste at labo	f the qualitative and quantitative yields of as for the recovery of high quality lecules from not edible vegetable biomass pratory scale												
В	8.3	Demonstration o of the crude poly recovered from r laboratory scale	f the biological and of the chemical stability phenolic extracts and of their fractions, not edible vegetable biomass and waste, at												
В	8.4	Demonstration o polyphenolic ext waste, agaist plan planta	f the biological activity of the high quality racts recovered from not edible biomass and nt pathogenic bacteria and nematodes, <i>in</i>												
В	9.5	Demonstration o polyphenolic bio biomass and was	f kilo-scale extraction of the high quality active molecules recovered from not edible te												
В	8.6	Demonstration o polyphenolic bio biomass and was	f the null toxicity profile of the high quality active molecules recovered from not edible te, on model organisms and microorganisms												
В	8.7	Demonstration o polyphenolic bio edible biomass a screenings	f the <i>in vivo</i> performances of the high quality active preparations, recovered from not nd waste, at pilot scale level in field												

		METABLE						-							
			Action		20	14			20	15			20	16	
Action number		Name of the Action		I	п	ш	IV	I	П	ш	IV	I	II	ш	IV
A. Pre	eparate	ory actions:													
B. Im	pleme	ntation actions:													
C. Mo	nitori	ng the impact of t	he project actions:		i					•					
		Monitoring on th	e environmental impact of copper												
C	.1	compounds and i	nematicides for the cropdefence against												
		phytopathogenic	bacteria and nematodes												
		Monitoring of the	e absence of side effects for the high quality												
C	2	standardised poly	yphenolic preparations on common targets												
		on any living orga	anism at labotatory level												
		Monitoring of the	e absence of a direct selection operated by												
	٠ _२	the polyphenolic	preparations towards the emergence of												
		bacteria resistant	t to the polyphenolic molecules themselves,												
		at laboratory leve	els												
		Monitoring the sl	hort term environmental benefits from the												
	`4	use of the high q	uality standardised polyphenolic												
		preparations in p	lant disease control at pilot scale level in												
		field screenings													
		Monitoring of the	e economic benefits deriving from the												
C	5	recycling of the s	pent vegetable biomass after the extraction												
		of the high qualit	y standardised polyphenolic molecules at												
		laboratory level													
		Monitoring the a	bsence of a selection on the polyphenolic												
C	6	preparations on t	the selection of copper and antibiotic												
_	-	resistant bacteria	a, on plant and in soil, from laboratory to in												
		tield screenings													
C	7	Monitoring of teo	chnical-socio-economic assessment of the												
С.	.,	project													

ACTION B2: 2015 Jan – 2015 Dec

Demonstration of the qualitative and quantitative

yields of the extraction process for the recovery of high quality polyphenolic molecules from not

edible vegetable biomass and waste, at laboratory scale.

Sweet Chestnut: lab scale extracts of bark, leaves and cupules

B2 Demonstration of the qualitative and quantitative yields of the extraction process for the recovery of high quality polyphenolic molecules from not edible vegetable biomass and waste, at laboratory scale.

Sweet Chestnut bark aqueous extract	mg/mL ext	mg/g bark
Monogalloyl glucose I	0.007	0.286
Gallic acid	0.034	1.377
Monogalloyl glucose II	0.000	0.000
Gallagic derivatives*	0.005	0.190
Ellagitannins with ellagic acid units**	0.006	0.238
Ellagitannins with HHDP- or NHTP- units**	0.001	0.022
Ellagic acid	0.004	0.173
Total	0.057	2.286

* Calibrated as gallic acid; ** Calibrated as ellagic acid

Sweet Chestnut: lab scale extracts of bark, leaves and cupules

B2 Demonstration of the qualitative and quantitative yields of the extraction process for the
 B2 recovery of high quality polyphenolic molecules from not edible vegetable biomass and
 waste, at laboratory scale.

Sweet Chestnut leaf aqueous extract	mg/mL ext	mg/g
Monogalloyl glucose I	0.046	1.821
Gallic acid	0.045	1.815
Monogalloyl glucose II	0.008	0.334
Gallagic derivatives*	0.023	0.918
Ellagitannins with ellagic acid units**	0.000	0.000
Ellagitannins with HHDP- or NHTP- units**	0.022	0.865
Ellagic acid	0.025	0.986
Flavonoids***	0.028	1.114
Total	0.168	6.739

*Calibrated as gallic acid;

- ** Calibrated as ellagic acid;
- *** Calibrated as kaempferol-3-glucoside.

Sweet Chestnut: lab scale extracts of bark, leaves and cupules

B2 Demonstration of the qualitative and quantitative yields of the extraction process for the recovery of high quality polyphenolic molecules from not edible vegetable biomass and waste, at laboratory scale.

Sweet Chestnut cupules aqueous extract	mg/mL ext	mg/g
Monogalloyl glucose I	0.000	0.000
Gallic acid	0.005	0.208
Monogalloyl glucose II	0.001	0.033
Gallagic derivatives*	0.000	0.000
Ellagitannins with ellagic acid units**	0.000	0.000
Ellagitannins with HHDP- or NHTP- units**	0.000	0.000
Ellagic acid	0.003	0.129
Total	0.009	0.370

* Calibrated as gallic acid; ** Calibrated as ellagic acid

Demonstration of the qualitative and quantitative yields of the extraction process for the recovery of high quality polyphenolic molecules from not edible vegetable biomass and waste, at laboratory scale.

Olive leaves extract	mg/g	µmol/g		
hydroxytyrosol glycol	2.352	13.834	Lab scale extrac	ts of
hydroxytyrosol glucoside	17.373	54.978	alive leaves and	nacto
hydroxytyrosol	2.194	14.245	onve leaves and	paste
tyrosol	0.319	2.313		
oleoside (demethyl elenolic acid glucoside)	7.067	18.119		
demethyl elenolic acid diglucoside	13.463	24.390		
elenolic acid glucoside	4.605	11.399		
elenolic acid glucoside derivative	2.905	7.191		
caffeic acid derivatives	0.475	2.638		
p-cumaroyl acid derivatives	0.422	2.571	Olive posto extract	mg/
aesculin	0.483	1.421	Onve paste extract	extra
verbascoside	4.726	7.573	Hydroxytyrosol derivatives	267
verbascoside isomer	1.969	3.155		207.
luteolin 7-O-glucoside	1.262	2.817	Secoiridoid der.	0.4
pinoresinol	5.339	14.913	Elenolic acid der	trace
acetoxy pinoresinol	12.131	29.160		
oleuropein	149.158	276.219	Hydroxycinnamic derivatives	9.2
oleuropein derivative	13.993	25.865	Total Polynhenols	276
total polyphenols	240.234	512.801		210.

C. Biancalani, M. Cerboneschi, F. Tadini-Buoninsegni, M. Campo, A. Scardigli, A. Romani and S. Tegli, PLoS ONE, 2016, Submitted.

May 13, 2016 "EVERGREEN" - LIFE13 ENV/IT/000461

B2

mg/g extract

267.00

0.48

traces

9.23

276.71

Demonstration of the qualitative and quantitative yields of the extraction process for the recovery of high quality polyphenolic molecules from not edible vegetable biomass and waste, at laboratory scale.

Lab scale extracts of artichoke leaves

Artichoke leaves extract	mg/g	µmol/g
monocaffeoyl quinic acids	2.133	6.026
dicaffeoyl quinic acids	4.688	9.085
clorogenic acid	16.350	46.188
cynarin	0.000	0.000
<i>p</i> -cumaroyl quinic acid	0.000	0.000
luteolin derivative	2.362	8.260
total polyphenols	25.534	69.559

C. Biancalani, M. Cerboneschi, F. Tadini-Buoninsegni, M. Campo, A. Scardigli, A. Romani and S. Tegli, *PLoS ONE*, **2016**, *Submitted*.

B2

B2 Demonstration of the qualitative and quantitative yields of the extraction process for the recovery of high quality polyphenolic molecules from not edible vegetable biomass and waste, at laboratory scale.

Dried pomace	mg/g	mmol/Kg	%
Delphinidin-3-glucoside	0.040	0.086	0.7
Cyanidin-3-glucoside	0.079	0.175	1.3
Petunidin-3-glucoside	0.064	0.134	1.0
Peonidin-3-glucoside	0.265	0.530	4.0
Malvidin-3-glucoside	0.249	0.505	3.8
Cyanidin-3-acetyl glucoside	0.007	0.014	0.1
Malvidin-3-acetyl glucoside	0.078	0.145	1.1
Malvidin-3-caffeoyl glucoside	0.012	0.018	0.1
Petunidin-3-cumaroyl glucoside	0.016	0.025	0.2
Peonidin-3-cumaroyl glucoside	0.022	0.034	0.3
Malvidin-3-cumaroyl glucoside	0.098	0.152	1.2
Delphinidin aglycone	0.287	0.867	6.6
Total anthocyanins	1.215	2.685	20.4
Gallic acid	0.019	0.112	0.9
Catechin	0.030	0.102	0.8
Epicatechin	0.032	0.112	0.9
ECG dimers	0.891	1.010	7.7
catechin/epicatechin trimers digallated	10.661	9.112	69.4
Total tannins	11.633	10.448	79.6
Total polyphenols	12.848	13.133	100.0

Quali-quantitative analysis of the hydroalcoholic extract of the dried pomace. The results are expressed as mg, mmol and % p/p of single compounds with respect to the sample weight.

Grape seed post-oil extraction residue

B2 Demonstration of the qualitative and quantitative yields of the extraction process for the recovery of high quality polyphenolic molecules from not edible vegetable biomass and waste, at laboratory scale.

GRAPE SEED	mg/g	mmol/Kg
Gallic acid	0.042	0.246
Catechin dimer B3	1.687	2.919
Catechin	0.816	2.814
Catechin trimer	0.000	0.000
Catechin dimer B6	1.288	2.228
Catechin dimer B2	0.776	1.343
Epicatechin	0.578	1.993
Catechin trimer	0.487	0.562
ECG dimers	1.649	1.870
Catechin oligomers quantified as tetramers	26.25	22.74
ECG dimers	17.07	19.35
catechin/epicatechin trimers digallated	39.35	33.63
catechin/epicatechin trimers digallated	4.473	3.823
TOTAL	94.46	93.52

OIL EXTRACTION RESIDUE (hydroalcoholic extract)	mg/g	mmol/Kg
Gallic acid	0.036	0.209
Catechin dimer B3	1.513	2.618
Catechin	1.004	3.462
Catechin trimer	0.434	0.501
Catechin dimer B6	0.662	1.145
Catechin dimer B2	0.778	1.346
Epicatechin	0.882	3.041
Catechin trimer	0.402	0.464
ECG dimers	1.470	1.667
Catechin oligomers quantified as tetramers	17.05	14.77
ECG dimers	12.07	13.69
catechin/epicatechin trimers digallated	25.14	21.49
catechin/epicatechin trimers digallated	6.687	5.716
TOTAL	68.13	70.12

Demonstration of the qualitative and quantitative yields of the extraction process for the recovery of high quality polyphenolic molecules from not edible vegetable biomass and waste, at laboratory scale.

Grape seed commercial extract

Grape seed commercial extract	mg/g	mmol/Kg
Gallic acid	0.004	0.024
Catechin dimer B3	2.217	3.836
Catechin	11.07	38.18
Catechin trimer	3.213	3.710
Catechin dimer B6	2.614	4.522
Catechin dimer B2	5.374	9.297
Epicatechin	13.62	46.96
Catechin trimer	3.706	4.280
Epicatechin gallate dimer	6.649	9.108
Epicatechin gallate	6.098	13.80
EC Oligomer calibrated as tetramers	54.88	47.55
Epicatechin gallate dimer	180.6	204.8
Trimers digallate	383.0	327.3
Trimers digallate	149.7	127.9
TOTAL	822.7	841.3

Antimicrobial activity

Antioxidant capacity

• Expensive

• Use of solvents during production process

B2

Grape seed post-oil extraction residue

B2 Demonstration of the qualitative and quantitative yields of the extraction process for the recovery of high quality polyphenolic molecules from not edible vegetable biomass and waste, at laboratory scale.

GRAPE SEED	mg/g	mmol/Kg
Gallic acid	0.042	0.246
Catechin dimer B3	1.687	2.919
Catechin	0.816	2.814
Catechin trimer	0.000	0.000
Catechin dimer B6	1.288	2.228
Catechin dimer B2	0.776	1.343
Epicatechin	0.578	1.993
Catechin trimer	0.487	0.562
ECG dimers	1.649	1.870
Catechin oligomers quantified as tetramers	26.25	22.74
ECG dimers	17.07	19.35
catechin/epicatechin trimers digallated	39.35	33.63
catechin/epicatechin trimers digallated	4.473	3.823
TOTAL	94.46	93.52

OIL EXTRACTION RESIDUE	mala	mmol/Ka
(aqueous extract)	iiig/g	IIIII0I/ Kg
Gallic acid	0.407	2.394
Catechin dimer B3	1.520	2.630
Catechin	0.644	2.221
Catechin trimer	0.544	0.629
Catechin dimer B6	0.766	1.325
Catechin dimer B2	0.963	1.666
Epicatechin	0.588	2.026
Catechin trimer	0.000	0.000
ECG dimers	1.057	1.199
Catechin oligomers quantified as tetramers	9.507	8.238
ECG dimers	5.494	6.229
catechin/epicatechin trimers digallated	13.47	11.52
catechin/epicatechin trimers digallated	8.919	7.623
TOTAL	43.88	47.70

ACTION B3: 2015 Jan – 2015 Dec

Demonstration of the biological and of the chemical

stability of the crude polyphenolic extracts and of their fractions, recovered from not edible vegetable biomass and waste, at laboratory scale.

B3 Demonstration of the biological and of the chemical stability of the crude polyphenolic
 B3 extracts and their fractions, recovered from not edible vegetable biomass and waste, at laboratory scale.

Total polyphenols content (mg/g)	Phenolea FF	Phenolea OH-Tyr	Olea fractions stability
Т0	248.07	303.14	Stability of Olea fractions at time 0 (T0) and
T12	240.23	276.70	at 12 months (T12) at room temperature.

In vitro antioxidant/antiradical activity

The **Phenolea fractions** antiradical activities, evaluated using a DPPH solution (3.16 10^{-4} mM), show the following **EC**₅₀ values: 6.757 µM for Phenolea F, 5.440 µM for Phenolea S, and 12.195 µM in the case of Phenolea OH-TYR.

The antiradical activity of the **grape seeds** extract has also been measured by the *in vitro* assay with stable radical DPPH• and the EC_{50} was 1.675 μ M.

Demonstration of the biological and of the chemical stability of the crude polyphenolic extracts and their fractions, recovered from not edible vegetable biomass and waste, at laboratory scale.

In vitro antioxidant/antiradical activity

Measu	Veasured values of GAE, EC ₅₀ and TE. d: density (g/mL); GAE:									
Gallic	Acid	Equivalents (g ga	llic acid/mmo	I total tannins by						
HPLC	/DAD);	EC ₅₀ : polyphenolic	concentration	n inhibiting DPPH.	Sweet Chestnut:					
activity	y to 50%	6 (μM); TE: Trolox Ε	Equivalents (µn	nol/g sample).	Antioxidant/antiradical activity					
	d	GAE	EC ₅₀	µmolTE/g						
1	1.01	0.636	0.695							
2	1.01	0.413	2.007							
3	1.06	1.182	0.444							
4	1.04	0.938	1.000		Folin-Ciocalteu					
5	1.03	0.565	1.429		🔅 DPPH·					
6	1.25	1.319	1.516	450.4	OBAC (commercial fractions)					
7	1.00	0.250	2.399							
8	1.07	0.616	1.510							
9	1.08	0.052	0.545							
10		1.210	0.586	3050						

M. Campo, P. Pinelli and A. Romani, Nat. Prod. Commun., 2016, 11(3), 409.

B3

ACTION B5: 2015 Jul – 2016 Mar

Demonstration of Kilo-scale extraction of the high

quality polyphenolic bioactive molecules recovered from vegetable not edible biomass and waste

B5

SWEET CHESTNUT

Quali-quantitative analysis HPLC/DAD/ESI-MS Tannic subclasses: all Kilo-scale process fractions

	Quantitative analysis by subclasses (%)										
	GA/TOT	GA/GTs	(C+V)/TOT	(C+V)/ETs	GTs/TOT	ETs/TOT	TOT*				
1	42.6	74.3	27.3	63.9	57.3	42.7	37.9				
2	74.4	86.4	10.6	75.8	86.1	13.9	15.6				
3	24.3	69.4	40.5	62.3	35.0	65.0	82.0				
4	38.3	79.0	33.1	64.1	48.4	51.6	75.3				
5	62.2	83.6	17.1	66.4	74.3	25.7	43.2				
6	6.0	17.9	33.8	50.7	33.3	66.7	121				
7	100.0	100.0	0.0	-	100.0	0.0	2.68				
8	63.0	84.0	15.1	60.1	74.9	25.1	138				
9	31.8	59.6	31.1	66.7	53.3	46.7	102				
10	21.4	48.4	24.4	43.9	44.4	55.6	372				

M. Campo, P. Pinelli and A. Romani, Nat. Prod. Commun., 2016, 11(3), 409.

Selementary S>

SWEET CHESTNUT

Quali-quantitative analysis HPLC/DAD/ESI-MS Individual compounds: Kilo-scale commercial fractions

						91-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
peak	compound	content in commercial liquid fraction			content in commercial dry fraction		
		mg/g	µmol/g	RSD %	mg/g	µmol/g	RSD %
1	vescalin	3.57	5.65	1.9	8.68	13.73	4.6
2	castalin	3.21	5.08	0.6	8.83	14.0	4.9
3	pedunculagin I	3.31	4.22	1.2	10.1	12.9	4.4
4	monogalloyl glucose l	2.51	7.57	1.3	4.69	14.1	2.4
5	gallic acid	1.53	9.02	1.9	13.6	79.8	2.1
6	monogalloyl glucose II	2.68	8.08	4.7	5.03	15.2	4.3
7	roburin D	4.03	4.36	1.2	9.61	10.4	3.4
8	Vescalagin	26.7	28.6	2.4	45.2	48.4	3.6
9	dehydrated tergallagic-C-glucoside	1.77	2.88	1.6	6.03	9.82	4.5
10	Castalagin	21.0	22.5	1.8	39.7	42.5	3.6
11	digalloyl glucose	3.79	7.84	1.2	12.2	25.3	2.0
12	O-galloyl-castalagin isomer	20.8	19.2	1.9	32.0	29.5	2.2
13	trigalloyl glucose	5.03	7.91	1.4	12.1	19.0	3.1
14	tetragalloyl glucose	4.72	5.99	3.2	9.18	11.6	2.4
15	ellagic acid	2.50	8.26	0.8	7.80	25.8	8.7
16	pentagalloyl glucose	3.67	3.90	2.0	0.00	0.00	-
	total tannins	111	151	1.0	225	372	2.5

M. Campo, P. Pinelli and A. Romani, *Nat. Prod. Commun.*, **2016**, *11(3)*, 409.

B5

- Each process stream was monitored
- The less concentrated fractions are chemically unstable due to hydrolysis of the high MW tannins
- The spray dried fractions is chemically stable after > 12 months at room temperature

Sweet Chestnut: aqueous extract of bark from pilot plant

Bark extract from pilot plant	mg/mL
Gallotannins*	0.024
Ellagitannins with ellagic acid units**	0.014
Ellagictannins with HHDP- or NHTP- units**	0.014
Procyanidins***	0.036
Ellagic acid	0.032
Total tannins	0.118
*Calibrated as gallic acid:	

*Calibrated as gallic acid; ** Calibrated as ellagic acid; *** Calibrated as catechin.

B5

C5

Demonstration of Kilo-scale extraction of the high quality polyphenolic bioactive molecules recovered from vegetable not-edible biomass and waste.

Monitoring of the economic benefits deriving from the recycling of the spent vegetable biomass after the extraction of the high quality standardised polyphenolic molecules at laboratory level

Sweet Chestnut extraction plant

Process: 4080 Kcal/Kg powder → 1346400 Kcal each batch

Biomass calorific value: mix pressed post-extraction spent residue+ 1/8 wood dust from chipper **2000 Kcal/Kg**

Biomass for energy: 10 tons each batch \rightarrow 2000*10000 Kcal energy delivered: energy from biomass can power the whole process.

OLEA: Kilo-scale extraction plant

Polyfunctional platform for the production of antioxidant extracts and biogas from byproducts of *Olea europaea* L.

Phenolea ^R, new biophenolic fractions from different tissues of Olea europaea
L. Romani A., Scardigli A., Ieri F., Banelli L., Pinelli P., Franconi F. XXVth
International Conference of Polyphenols, Polyphenols Communcations 2010.
2010, 2, T4. 75.

Treatment plant for leaves/branches/pulp and dry/wet husks diluted with waste water

OLEA

	Plant Fractions (g/L)				Concentrated Fractions (mg/g)			Spray Dried (mg/g)	
	GL Olea CMF	GL Olea CNF	GL Olea CRO	DL Olea CRO	Soft Extract Olea OH-Tyr	Soft Extract Olea GL	Soft Extract Olea DL	Olea GL	Olea DL
1	0.29 ± 0.10	4.69 ± 0.67	$\textbf{6.18} \pm \textbf{0.58}$	3.63 ± 0.64	279.89 ± 18.24	24.69 ± 3.47	25.21 ± 1.56	23.55 ± 0.03	15.98 ± 0.96
2	2.74 ± 1.75	25.13 ± 8.88	$\textbf{26.62} \pm \textbf{8.14}$	$\textbf{2.44} \pm \textbf{1.74}$	nd	164.19 ± 1.47	11.09 ± 0.45	78.18 ± 16.70	25.41 ± 11.20
3	0.82 ± 0.28	4.05 ± 1.33	$\textbf{4.15} \pm \textbf{0.45}$	1.05 ± 0.37	0.51 ± 0.04	28.34 ± 0.43	$\textbf{7.54} \pm \textbf{0.40}$	16.98 ± 1.17	9.30 ± 4.46
4	0.03 ± 0.02	0.24 ± 0.13	0.30 ± 0.67	0.21 ± 0.12	7.83 ± 0.25	1.42 ± 0.06	4.30 ± 0.31	1.26 ± 0.88	1.49 ± 0.61
5	0.15 ± 0.09	0.56 ± 0.18	0.83 ± 0.13	0.29 ± 0.21	nd	1.27 ± 0.01	1.00 ± 0.41	4.38 ± 1.63	3.08 ± 1.05
6	0.09 ± 0.03	0.99 ± 0.31	0.83 ± 0.23	0.71 ± 0.49	1.69 ± 0.17	$\textbf{6.76} \pm \textbf{0.10}$	5.85 ± 1.05	$\textbf{4.13} \pm \textbf{0.44}$	2.27 ± 0.37
7	nd	$\textbf{3.18} \pm \textbf{1.16}$	nd	nd	nd	17.48 ± 0.01	2.65 ± 0.23	nd	nd
Tot.	4.12 ± 2.12	38.84 ± 10.31	38.91 ±8.24	8.33 ± 2.51	289.93 ± 18.70	244.15 ± 5.54	57.63 ± 4.42	128.48 ± 20.84	57.53 ± 18.66

CMF = Concentrate of Microfiltration; CNF = Concentrate of Nanofiltration; CRO = Concentrate of Reverse Osmosis; GL = Green Leaves; DL = Dried Leaves; nd = not detected. 1. Hydroxytyrosol der.; 2. Secoiridoid der.; 3. Elenolic acid der.; 4. Hydroxycinnamic der.; 5. Flavonoids; 6. Verbascoside; 7. Lignans.

A. Romani, A. Scardigli and P. Pinelli, Int. J. Food Sci. Tech., 2016, Submitted.

C. Biancalani, M. Cerboneschi, F. Tadini-Buoninsegni, M. Campo, A. Scardigli, A. Romani and S. Tegli, *PLoS ONE*, **2016**, *Submitted*.

B5

ERANTOIO DOP

Demonstration of Kilo-scale extraction of the high quality polyphenolic bioactive molecules recovered from vegetable not-edible biomass and waste.

SASSI S.r.I.

COLLE DEL

OLEA: Kilo-scale extraction plant

Soft Extract Olea OH-Tyr	Concentrated fraction (mg/g)		
Hydroxytyrosol derivatives	279.89 ± 18.24		
Secoiridoid der.	nd		
Elenolic acid der.	0.51 ± 0.04		
Hydroxycinnamic derivatives	7.83 ± 0.25		
Flavonoids	nd		
Verbascoside	1.69 ± 0.17		
Lignans	nd		
Total Polyphenols	289.93 ± 18.70		

May 13, 2016 "EVERGREEN" - LIFE13 ENV/IT/000461

Vitasafe

· Vitasafe

Olea fractions: chemical stability

Total polyphenols content (mg/g)	Phenole a FF	Phenolea FS	Phenolea OH-Tyr
ТО	248.07	60.75	303.14
T12	240.23	54.50	276.70

Cynara Active^R, nutraceutical standardized extracts from *Cynara scolymus* L.

	CUF Cynara GL mg/L	CRO Cynara GL mg/L	Cynara GL Soft extract mg/g	Cynara GL Spray Dried mg/g
MCC	1.07 ± 0.58	65.19 ± 13.28	6.61± 1.34	14.23± 0.48
DCC	2.81 ± 1.19	3.96 ± 5.60	7.64± 0.69	7.63± 0.20
Chlorogenic acid	2.04 ± 0.47	34.00 ± 7.38	11.93± 1.72	12.36± 0.03
Cynarin	0.50 ± 0.43	28.94 ± 14.89	1.62± 0.01	4.41± 0.34
Flavonols	0.23 ± 0.06	10.11 ± 5.39	1.09± 0.27	3.48± 0.56
Total Polyphenols	6.57 ± 1.92	142.21 ± 9.58	28.90± 4.02	42.10± 0.42

CUF = Concentrate Ultrafiltration; CRO = Concentrate Reverse Osmosis; GL = Green Leaves. HPLC/DAD quantitative analyses of different plant fractions from *Cynara* leaves (CUF and CRO), and two concentrated fractions from CRO: soft extract and spray dried from green leaves. Data are mean values of triplicate analyses (±SD).

A. Romani, A. Scardigli and P. Pinelli, Int. J. Food Sci. Tech., 2016, Submitted.

B5

New Formulations

- FORM. 1 (liquid): TC 2%, O 1% in water (dilute 1:10 for use)
- FORM. 2 (liquid): TC 1.5%; O 1%; V 0.3% in water (dilute 1:10 for use)
- FORM. 3 (gel): TC 0.2%, O 0.1% in water + hydrophilic polymer
- FORM. 4 (gel): TC 0.15%; O 0.1%; V 0.03% in water + hydrophilic polymer

TC: **Sweet Chestnut** aqueous extract, liquid fraction 12% p/p hydrolyzable tannins;

O: liquid fraction of *O*. *europea* leaves 3.22% p/v polyphenols (1.13% hydroxytyrosol);

V: commercial dry grape seeds extract 82% p/p condensed tannins.

Provided to:

- DiSPAA- University of Florence (Prof. Tegli)
- INSTM
- ASTRA Innovazione e Sviluppo
- CEBAS-CSIC

New Formulations

GEL FORMULATION with grape seed post-oil extraction residue:

Release of condensed tannins into the ground to obtain antimicrobial and nematostatic/nematicidal effects

In a phase of characterization and optimization (laboratory + industrial scale)

The formulation may be enriched with other natural extracts.

New Formulations

GEL FORMULATION with grape seed post-oil extraction residue:

Stability of the liquid formulations: accelerated aging at 40°C

- □ Formulation #1: TC/O conc (concentrated solution). Sweet Chestnut liquid fraction (20%)/Olea liquid fraction 3.22% polyphenols (10%) [to dilute to 100 for use].
- □ Formulation #2: TC/O dil (diluted solution). Sweet Chestnut liquid fraction (2%)/Olea liquid fraction 3.22% polyphenols (1%) [to dilute to 10 for use].

	mg/mL GAE									
	TO	T1	T2	T3	T4	T5	T6	T7	T8	Т9
Form1	154.56	149.64	156.67	151.87	154.71	153.26	155.60	154.12	152.32	148.59
Form2	10.286	11.276	11.545	11.162	11.160	11.580	11.161	11.151	11.285	11.520

Folin-Ciocalteu assay results for the SC/OE formulations as such (**T0**) and during accelerated aging at 40°C (**T1-T9**). The results are expressed as mg/mL GAE (Gallic Acid Equivalents). Measures: T0 nov 27, 2015; T1 dec 4, 2015; T2 dec 11, 2015; T3 dec 18, 2015; T4 dec 23, 2015; T5 jan 7, 2016; T6 jan 14, 2016; T7 feb 15, 2016; T8 mar 15, 2016; T9 apr 15, 2016.

Romani A., Campo M. Scardigli A., Biancalani C., Cerboneschi M., Tegli S. Acts of the XXVIII International Conference on Polyphenols, Vienna 11-15 jul 2016

